Challenges in Petroleum Characterization—A Review

Author:

Shishkova IvelinaORCID,Stratiev DichoORCID,Kolev Iliyan Venkov,Nenov Svetoslav,Nedanovski Dimitar,Atanassov Krassimir,Ivanov Vitaly,Ribagin Simeon

Abstract

252 literature sources and about 5000 crude oil assays were reviewed in this work. The review has shown that the petroleum characterization can be classified in three categories: crude oil assay; SARA characterization; and molecular characterization. It was found that the range of petroleum property variation is so wide that the same crude oil property cannot be measured by the use of a single standard method. To the best of our knowledge for the first time the application of the additive rule to predict crude oil asphaltene content from that of the vacuum residue multiplied by the vacuum residue TBP yield was examined. It was also discovered that a strong linear relation between the contents of C5-, and C7-asphaltenes in crude oil and derived thereof vacuum residue fraction exists. The six parameter Weibull extreme function showed to best fit the TBP data of all crude oil types, allowing construction of a correct TBP curve and detection of measurement errors. A new SARA reconstitution approach is proposed to overcome the poor SARA analysis mass balance when crude oils with lower density are analyzed. The use of a chemometric approach with combination of spectroscopic data was found very helpful in extracting information about the composition of complex petroleum matrices consisting of a large number of components.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference252 articles.

1. The Chemistry and Technology of Petroleum

2. The Science and Technology of Unconventional Oils;Ramirez-Corredores,2017

3. Composition and Analysis of Heavy Petroleum Fractions

4. The Boduszynski Continuum:Contributions to the Understanding of the Molecular Composition of Petroleum;Ovalles,2018

5. An Investigation on the Feasibility of Simulating the Distribution of the Boiling Point and Molecular Weight of Heavy Oils

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3