Classification of Benign and Malignant Breast Masses on Mammograms for Large Datasets using Core Vector Machines
Author:
Affiliation:
1. Amal Jyothi College of Engineering, Kerala 686518, India
2. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore Campus, Katpadi, India
Abstract
Publisher
Bentham Science Publishers Ltd.
Subject
Radiology Nuclear Medicine and imaging
Reference25 articles.
1. Balleyguier,C.; Boyer,B.; Athanasi,ou,A.; Vanel,D.; Sigal,R. Under-standing CAD (computer-aided diagnosis) in mammography. J Ra-diol. 2005; 86(1): 29-35. http://dx.doi.org/10.1016/S0221-0363(05) 81319-8 PMID: 15785414
2. Malvia,S.; Bagadi,SA.; Dubey,US.; Saxena,S. Epidemiology of breast cancer in Indian women. Asia-Pacific J Clin OncolPubl. 2017; 2017: 9
3. Ng,KH.; Muttarak,M. Advances in mammography have improved early detection of breast cancer. J-Hong Kong Coll Radiol. 2003; 6: 126-31
4. Timp,S.; Karssemeijer,N. A ne w 2D segmentation method based on dynamic programming applied to computer aided detection in mammography. Med Phys. 2004; 31(5): 958-71. http://dx.doi.org/10.1118/1.1688039 PMID: 15191279
5. Kooi T, Litjens G, van Ginneken B.;et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Im-age Anal. 2017; 35: 303-12. http://dx.doi.org/10.1016/j. media.2016.07.007 PMID: 27497072
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An optimized ensemble classifier for mammographic mass classification;Computers and Electrical Engineering;2024-10
2. Classification System for Early Breast Cancer Diagnosis using Machine Learning;2024-03-22
3. Breast Tumor Classification using Short-ResNet with Pixel-based Tumor Probability Map in Ultrasound Images;Ultrasonic Imaging;2023-03
4. Diagnostic Accuracy of Machine Learning Models on Mammography in Breast Cancer Classification: A Meta-Analysis;Diagnostics;2022-07-05
5. Multi-Tasking U-Shaped Network for Benign and Malignant Classification of Breast Masses;IEEE Access;2020
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3