Classification of Benign and Malignant Breast Masses on Mammograms for Large Datasets using Core Vector Machines

Author:

Jebamony Jebasonia1ORCID,Jacob Dheeba2ORCID

Affiliation:

1. Amal Jyothi College of Engineering, Kerala 686518, India

2. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore Campus, Katpadi, India

Abstract

Background: Breast cancer is one of the most leading causes of cancer deaths among women. Early detection of cancer increases the survival rate of the affected women. Machine learning approaches that are used for classification of breast cancer usually takes a lot of processing time during the training process. This paper attempts to propose a Machine Learning approach for breast cancer detection in mammograms, which does not depend on the number of training samples. Objective: The paper aims to develop a core vector machine-based diagnosis system for breast cancer detection using the date from MIAS. The main motivation behind using this system is to reduce the computational and memory requirement for large training data and to improve the classification accuracy. Methods: The proposed method has four stages: 1) Pre-processing is done to extract the breast region using global thresholding and enhancement using histogram equalization; 2) identification of potential mass using Otsu thresholding; 3) feature extraction using Laws Texture energy measures; and 4) mass detection is done using Core vector machine (CVM) classifier. Results: Comparative analysis was done with different existing algorithms: Artificial Neural Network (ANN), Support Vector Machine (SVM), and Fuzzy Support Vector Machines (FSVM). The results illustrate that the proposed Core Vector Machine (CVM) classifier produced a promising result in terms of sensitivity (96.9%), misclassification rate (0.0443) and accuracy (95.89%). The time taken for training process is 0.0443, which is less when compared with other machine learning algorithms. Conclusion: Performance analysis shows that CVM classifier is superior to other classifiers like ANN, SVM and FSVM. The computational time of the CVM classifier during the training process was also analysed and found to be better than other discussed algorithms. The results achieved show that CVM classifier is the best algorithm for breast mass detection in mammograms.

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3