Breast Tumor Classification using Short-ResNet with Pixel-based Tumor Probability Map in Ultrasound Images

Author:

Wang You-Wei1,Kuo Tsung-Ter2,Chou Yi-Hong2,Su Yu2,Huang Shing-Hwa3,Chen Chii-Jen4ORCID

Affiliation:

1. Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan

2. Department of Medical Imaging and Radiological Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan

3. Department of Breast Surgery, En Chu Kong Hospital, New Taipei City, Taiwan

4. Department of Computer Science and Information Engineering, Tamkang University, New Taipei City, Taiwan

Abstract

Breast cancer is the most common form of cancer and is still the second leading cause of death for women in the world. Early detection and treatment of breast cancer can reduce mortality rates. Breast ultrasound is always used to detect and diagnose breast cancer. The accurate breast segmentation and diagnosis as benign or malignant is still a challenging task in the ultrasound image. In this paper, we proposed a classification model as short-ResNet with DC-UNet to solve the segmentation and diagnosis challenge to find the tumor and classify benign or malignant with breast ultrasonic images. The proposed model has a dice coefficient of 83% for segmentation and achieves an accuracy of 90% for classification with breast tumors. In the experiment, we have compared with segmentation task and classification result in different datasets to prove that the proposed model is more general and demonstrates better results. The deep learning model using short-ResNet to classify tumor whether benign or malignant, that combine DC-UNet of segmentation task to assist in improving the classification results.

Funder

National Science and Technology Council of Taiwan

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3