Evaluation and Calibration of CBCT Reconstruction Models

Author:

Gao Tao1,Sun Yuchun2,Yuan Fusong2,Liang Shanshan2

Affiliation:

1. Dental Department, Beijing Jishuitan Hospital, Beijing, China

2. Center of Digital Dentistry, Department of Prosthodontics, Peking University School and Hospital of Stomatology; National Center of Stomatology; National Clinical Research Center for Oral Diseases; National Engineering Laboratory for Digital and Material Technology of Stomatology; NHC Research Center of Engineering and Technology for Digital Dentistry; Beijing Key Laboratory of Digital Stomatology, Beijing, China

Abstract

Purpose: This study proposes a method for improving the accuracy of three-dimensional (3D) models generated through cone-beam computed tomography (CBCT). Methods: A 3D cuboid model fitted with a ¼-scale dentition on its top surface was constructed to simulate an alveolar bone with teeth. A physical specimen of the model was printed and the distance between its opposite sides was measured using a vernier caliper. The physical model was light-scanned, and the surface data of the generated 3D model were corrected by calibrating the distance between opposite sides against the vernier caliper measurements. The physical model was also scanned using CBCT to reconstruct a second 3D model. The overall deviation between the two models and the distance deviation in each direction of the cuboid and dentition were quantified and statistically analyzed. Results: The overall deviation between the reconstructed CBCT model and the calibrated structured light-scanned model was 0.098 ± 0.001 mm. Following calibration, the overall deviation was 0.010 ± 0.006 mm. A one-way variance analysis suggested that the overall deviations' differences were not statistically significant (P < 0.05). Conclusion: This study lays a solid foundation for accurate dental implantation.

Funder

National Key Research and Development Program of China

Chinese Academy of Medical Sciences

Opening Research Fund of the State Key Laboratory for Advanced Metals and Materials

Fundamental Research Funds for the Central Universities

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3