Recent Progress in Prediction Systems for Drug-induced Liver Injury Using In vitro Cell Culture

Author:

Ozawa Shogo1,Miura Toshitaka1,Terashima Jun1,Habano Wataru1,Ishida Seiichi2

Affiliation:

1. Department of Clinical Pharmaceutical Sciences, Division of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, Yahaba, Japan

2. Department of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan

Abstract

Background: In order to avoid drug-induced liver injury (DILI), in vitro assays, which enable the assessment of both metabolic activation and immune reaction processes that ultimately result in DILI, are needed. Objective: In this study, recent progress in the application of in vitro assays using cell culture systems is reviewed for potential DILI-causing drugs/xenobiotics and a mechanistic study on DILI, as well as on the limitations of in vitro cell culture systems for DILI research, was carried out. Methods: Information related to DILI was collected through a literature search of the PubMed database. Results: The initial biological event for the onset of DILI is the formation of cellular protein adducts after drugs have been metabolically activated by drug metabolizing enzymes. The damaged peptides derived from protein adducts lead to the activation of CD4+ helper T lymphocytes and recognition by CD8+ cytotoxic T lymphocytes, which destroy hepatocytes through immunological reactions. Because DILI is a major cause of drug attrition and drug withdrawal, numerous in vitro systems consisting of hepatocytes and immune/inflammatory cells or spheroids of human primary hepatocytes containing non-parenchymal cells have been developed. These cellular-based systems have identified DILI-inducing drugs, with approximately 50% sensitivity and 90% specificity. Conclusion: Different co-culture systems consisting of human hepatocyte-derived cells and other immune/inflammatory cells have enabled the identification of DILI-causing drugs and of the actual mechanisms of action.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),Biochemistry (medical),Clinical Biochemistry,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3