Formulation and evaluation of α-Pinene loaded Self-emulsifying nanoformulation for in-vivo anti-Parkinson’s activity

Author:

Srivastava Rajnish1,Choudhury P.K.1,Dev Suresh Kumar1,Rathore Vaibhav1

Affiliation:

1. Department of Pharmaceutical Science, Mohanlal Sukhadia University, Udaipur, Rajasthan, India

Abstract

Aim: The aim of the present study was to develop and optimize the self-nanoemulsifying drug delivery system of α-pinene (ALP-SNEDDS) and to evaluate its in-vivo anti-Parkinson’s activity. Background: Different lipid-based drug delivery technologies have been researched to upgrade the bioavailability of such drug candidates and to expand their clinical adequacy upon oral administration. Self-emulsifying drug delivery system (SEDDS) have pulled in expanding interests and, specifically, self-nanoemulsifying drug delivery system (SNEDDS). Objective: The present work was an attempt in order to improve the bioavailability of the ALP via defining the role of self-nanoemulsifying formulations for its neuroprotective effect. Method: Miscibility of the ALP was estimated in various excipient components to select the optimized combination. Self-nanoemulsification, thermodynamic stability, effect of dilution on robustness, optical clarity, viscosity and conductivity tests were performed. The in-vivo anti-Parkinson’s activity of the ALP-SNEEDS formulations were done by using Pilocarpine antagonism induced Parkinsonism in rodents. Behavioural tests like tremulous jaw movements, body temperature, salivation and lacrimation are performed. Result: Two optimized formulation, composed of Anise oil, Tween 80 and Transcutol-HP of Oil: Smix ratio (4:6 and 3:7) were selected. The Smix ratio for both the formulation was 2:1. The particle size was found to consistent with the increase in dilution. The mean negative zeta potential of the formulations was found to be increased with increase in dilution. The TEM images of the formulations reveals spherical shape of the droplet. The in-vitro drug release profile was found to be significant as compared to plain ALP suspension. Conclusion: The results form in-vivo studies indicate that nanosizing and enhanced solubilisation of oral ALP-SNEDDS formulations significantly improved the behavioural activities as compared to plain ALP suspension.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3