Affiliation:
1. Department of Pharmaceutical Science, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
Abstract
Aim:
The aim of the present study was to develop and optimize the self-nanoemulsifying drug delivery system of α-pinene (ALP-SNEDDS) and to evaluate its in-vivo anti-Parkinson’s activity.
Background:
Different lipid-based drug delivery technologies have been researched to upgrade the bioavailability of such drug candidates and to expand their clinical adequacy upon oral administration. Self-emulsifying drug delivery system (SEDDS) have pulled in expanding interests and, specifically, self-nanoemulsifying drug delivery system (SNEDDS).
Objective:
The present work was an attempt in order to improve the bioavailability of the ALP via defining the role of self-nanoemulsifying formulations for its neuroprotective effect.
Method:
Miscibility of the ALP was estimated in various excipient components to select the optimized combination. Self-nanoemulsification, thermodynamic stability, effect of dilution on robustness, optical clarity, viscosity and conductivity tests were performed. The in-vivo anti-Parkinson’s activity of the ALP-SNEEDS formulations were done by using Pilocarpine antagonism induced Parkinsonism in rodents. Behavioural tests like tremulous jaw movements, body temperature, salivation and lacrimation are performed.
Result:
Two optimized formulation, composed of Anise oil, Tween 80 and Transcutol-HP of Oil: Smix ratio (4:6 and 3:7) were selected. The Smix ratio for both the formulation was 2:1. The particle size was found to consistent with the increase in dilution. The mean negative zeta potential of the formulations was found to be increased with increase in dilution. The TEM images of the formulations reveals spherical shape of the droplet. The in-vitro drug release profile was found to be significant as compared to plain ALP suspension.
Conclusion:
The results form in-vivo studies indicate that nanosizing and enhanced solubilisation of oral ALP-SNEDDS formulations significantly improved the behavioural activities as compared to plain ALP suspension.
Publisher
Bentham Science Publishers Ltd.
Subject
General Engineering,Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献