Self-Emulsifying Drug Delivery Systems: An Alternative Approach to Improve Brain Bioavailability of Poorly Water-Soluble Drugs through Intranasal Administration

Author:

Meirinho SaraORCID,Rodrigues MárcioORCID,Santos Adriana O.ORCID,Falcão AmílcarORCID,Alves GilbertoORCID

Abstract

Efforts in discovering new and effective neurotherapeutics are made daily, although most fail to reach clinical trials. The main reason is their poor bioavailability, related to poor aqueous solubility, limited permeability through biological membranes, and the hepatic first-pass metabolism. Nevertheless, crossing the blood–brain barrier is the major drawback associated with brain drug delivery. To overcome it, intranasal administration has become more attractive, in some cases even surpassing the oral route. The unique anatomical features of the nasal cavity allow partial direct drug delivery to the brain, circumventing the blood–brain barrier. Systemic absorption through the nasal cavity also avoids the hepatic first-pass metabolism, increasing the systemic bioavailability of highly metabolized entities. Nevertheless, most neurotherapeutics present physicochemical characteristics that require them to be formulated in lipidic nanosystems as self-emulsifying drug delivery systems (SEDDS). These are isotropic mixtures of oils, surfactants, and co-surfactants that, after aqueous dilution, generate micro or nanoemulsions loading high concentrations of lipophilic drugs. SEDDS should overcome drug precipitation in absorption sites, increase their permeation through absorptive membranes, and enhance the stability of labile drugs against enzymatic activity. Thus, combining the advantages of SEDDS and those of the intranasal route for brain delivery, an increase in drugs’ brain targeting and bioavailability could be expected. This review deeply characterizes SEDDS as a lipidic nanosystem, gathering important information regarding the mechanisms associated with the intranasal delivery of drugs loaded in SEDDS. In the end, in vivo results after SEDDS intranasal or oral administration are discussed, globally revealing their efficacy in comparison with common solutions or suspensions.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3