Nanotechnology-based Drug Delivery, Metabolism and Toxicity

Author:

Malaviya Pooja1,Shukal Dhaval1ORCID,Vasavada Abhay R.1ORCID

Affiliation:

1. Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad 380052, India

Abstract

Background: Nanoparticles (NPs) are being used extensively owing to their increased surface area, targeted delivery and enhanced retention. NPs have the potential to be used in many disease conditions. Despite widespread use, their toxicity and clinical safety still remain a major concern. Objective: The purpose of this study was to explore the metabolism and toxicological effects of nanotherapeutics. Methods: Comprehensive, time-bound literature search was done covering the period from 2010 till date. The primary focus was on the metabolism of NP including their adsorption, degradation, clearance, and bio-persistence. This review also focuses on updated investigations on NPs with respect to their toxic effects on various in vitro and in vivo experimental models. Results: Nanotechnology is a thriving field of biomedical research and an efficient drug delivery system. Further their applications are under investigation for diagnosis of disease and as medical devices. Conclusion: The toxicity of NPs is a major concern in the application of NPs as therapeutics. Studies addressing metabolism, side-effects and safety of NPs are desirable to gain maximum benefits of nanotherapeutics.

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3