Astragaloside IV Protects Sepsis-induced Acute Kidney Injury by Attenuating Mitochondrial Dysfunction and Apoptosis in Renal Tubular Epithelial Cells

Author:

Tu Ye1,Su Li2,Wang Zhibin34,Feng Meixia2,Lv Juan2,Zhang Chenxi2,Chen Dagui2,Guo Huan2

Affiliation:

1. Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China

2. Institute of Translational Medicine, Shanghai University, Shanghai, China

3. Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China

4. School of Pharmacy, Naval Medical University, 200433, Shanghai, China

Abstract

Background: Acute kidney injury (AKI) is closely linked to the pathogenesis of sepsis. Oxidative stress can affect the development of AKI by increasing damage to renal tubular epithelial cells. Astragaloside IV (AS-IV) is a natural saponin widly verified beneficial for ameliorating sepsis-induced kidney injury. However, the underlying mechanisms of AS-IV on relieving oxidative stress in renal tubular epithelial cells are yet to be established. Purpose: We aimed to investigate whether AS-IV could attenuate mitochondrialdysfunction and apoptosis in renal tubular epithelial cells and reveal its underlying mechanisms. Methods: For the in vivo study, mice were divided into four groups (n=6): sham+saline, CLP+saline, CLP+ASIV- low dosage (5 mg/kg), CLP+AS-IV-high dosage (10 mg/kg), After 6 h or 24 h of treatment, the renal injuries were assessed based on related parameters of blood, protein and histopathological examination. Immunohistochemistry and ELISA were used to examine renal function. The molecular mechanism of AS-IV inhibited apoptosis and mitochondrial damage were monitored by flow cytometry and western blot analysis in HK-2 cells. Results: We found that AS-IV ameliorates renal vacuolization, brush border loss, mitochondrial ultrastructure changes in sepsis-induced AKI, and the apoptosis and oxidative damage were greatly mitigated by AS-IV (10 mg/kg)-treated group. Abnormal changes in mitochondrial morphology and mitochondrial membrane potential were alleviated, and the expression of mitochondrial complex protein I (NDUFB8) and mitochondrial complex protein II (SDHB8) increased with (10 mg/kg)-treated group. Tubular epithelial cell apoptosis in AS-IV (20 μM)-treated cells was reduced by the Bax and cleaved caspase3 pathway. Conclusion: These studies demonstrated that AS-IV protects against sepsis-induced kidney tubular injury by alleviating oxidative stress, mitochondrial dysfunction possibly associated with the restored cleaved caspase3 pathway.

Funder

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3