Impact of Antioxidant Natural Compounds on the Thyroid Gland and Implication of the Keap1/Nrf2 Signaling Pathway

Author:

Paunkov Ana1,Chartoumpekis Dionysios V.2,Ziros Panos G.1,Chondrogianni Niki3,Kensler Thomas W.4,Sykiotis Gerasimos P.1

Affiliation:

1. Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland

2. Department of Internal Medicine, Endocrinology Unit, Patras University Medical School, Patras, Greece

3. Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece

4. Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States

Abstract

Background:Natural compounds with potential antioxidant properties have been used in the form of food supplements or extracts with the intent to prevent or treat various diseases. Many of these compounds can activate the cytoprotective Nrf2 pathway. Besides, some of them are known to impact the thyroid gland, often with potential side-effects, but in other instances, with potential utility in the treatment of thyroid disorders.Objective:In view of recent data regarding the multiple roles of Nrf2 in the thyroid, this review summarizes the current bibliography on natural compounds that can have an effect on thyroid gland physiology and pathophysiology, and it discusses the potential implication of the Nrf2 system in the respective mechanisms.Method & Results:Literature searches for articles from 1950 to 2018 were performed in PubMed and Google Scholar using relevant keywords about phytochemicals, Nrf2 and thyroid. Natural substances were categorized into phenolic compounds, sulfur-containing compounds, quinones, terpenoids, or under the general category of plant extracts. For individual compounds in each category, respective data were summarized, as derived from in vitro (cell lines), preclinical (animal models) and clinical studies. The main emerging themes were as follows: phenolic compounds often showed potential to affect the production of thyroid hormones; sulfur-containing compounds impacted the pathogenesis of goiter and the proliferation of thyroid cancer cells; while quinones and terpenoids modified Nrf2 signaling in thyroid cell lines.Conclusion:Natural compounds that modify the activity of the Nrf2 pathway should be evaluated carefully, not only for their potential to be used as therapeutic agents for thyroid disorders, but also for their thyroidal safety when used for the prevention and treatment of non-thyroidal diseases.

Funder

Research and Innovation

Swiss National Science Foundation Research Grants

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

Reference234 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3