Affiliation:
1. Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran
2. Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3. Laboratory for Red Blood Cell Diagnostics, Sanquin, Amsterdam, Netherlands
Abstract
The most serious hallmark step of carcinogenesis is oxidative stress, which induces cell DNA damage. Although in normal conditions ROS are important second messengers, in pathological conditions such as cancer, due to imbalanced redox enzyme expression, oxidative stress can occur. Recent studies with firmly established evidence suggest an interdependence between oxidative stress and thyroid cancer based on thyroid hormone synthesis. Indeed, a reduced antioxidant defense system might play a part in several steps of progression in thyroid cancer. Based on studies that have been conducted previously, future drug designs for targeting enzymatic ROS sources, as a single agent or in combination, have to be tested. Polyphenols represent the potential for modulating biological events in thyroid cancer, including antioxidative activity. Targeting enzymatic ROS sources, without affecting the physiological redox state, might be an important purpose. As regards the underlying chemopreventive mechanisms of natural compounds that have been discussed in other cancer models, the confirmation of the influence of polyphenols on thyroid cancer is inconclusive and rarely available. Therefore, there is a need for further scientific investigations into the features of the antioxidative effects of polyphenols on thyroid cancer. The current review illustrates the association between some polyphenols and the key enzymes that take place in oxidation reactions in developing thyroid cancer cells. This review gives the main points of the enzymatic ROS sources act and redox signaling in normal physiological or pathological contexts and supplies a survey of the currently available modulators of TPO, LOX, NOX, DUOX, Nrf2, and LPO derived from polyphenols.
Subject
Cell Biology,Aging,General Medicine,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献