Medical Image Processing based on Generative Adversarial Networks: A Systematic Review

Author:

Liu Jun1,Li Kunqi1,Dong Hua1,Han Yuanyuan1,Li Rihui2

Affiliation:

1. College of Information Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China

2. Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau S.A.R, China | Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, Stanford University, Stanford, CA, USA

Abstract

Background:: Generative adversarial networks (GANs) have demonstrated superior data generation capabilities compared to other methods, making them popular for use in medical image applications. These features have intrigued researchers in the medical imaging field, resulting in a swift implementation of these techniques in various conventional and novel applications such as image reconstruction, segmentation, detection, classification, and cross-modality synthesis. A comprehensive review of recent medical imaging breakthroughs will benefit researchers interested in this field. In this review, we aimed to introduce the origin, principle, and extended forms of GANs and summarize the state-of-the-art progress of GAN-based medical image processing methods. Methods:: We searched the literature for studies on Google Scholar and PubMed using the keywords “Segmentation,” “Classification,” “medical image,” and “generative adversarial network.” Specifically, the initial search revealed 5423 publications after the removal of duplicated and non-accessible fulltext publications. Then, after the title and abstract screening, 680 underwent full-text screening. Finally, 121 studies were included in our final analysis after full-text screening. Results:: The date range of the studies covered in this review is from January 1, 2017, to the present. After a thorough screening and qualification assessment, 121 studies involving GAN-based applications in seven areas of medical images were included in the final methodological review. These areas included synthesis, classification, segmentation, conversion, reconstruction, denoising, and lesion detection. We further classified and summarized these papers into clinical applications, classification methods, and imaging modalities. Conclusion:: We thoroughly examined the latest research progress of GAN-based medical image augmentation. These techniques effectively alleviate the challenge of limited training samples for medical image diagnosis and treatment models. Furthermore, several critical issues associated with GANs, such as pattern collapse, instability, and lack of interpretability, require attention in future research.

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3