Modelling Fabrication Variability in Silicon Photonic Devices

Author:

Ayub Hamdani Mursal1,Qazi Gausia1

Affiliation:

1. National Institute of Technology,Department of Electronics and Communication,Srinagar,India,

Abstract

Silicon photonics allows for high yield and complex integration with large processing, packaging, and testing availability. Using silicon as a material leverages the use of the existing CMOS infrastructure with hybrid and epitaxial layer integration, allowing photonic system-on-chip. Although high refractive index contrast with sub micrometer waveguide dimensions allows a dense integration, sensitivity to fabrication variations shows an increased effect. This sensitivity shows a cumulative effect on the optical properties of complex silicon photonic circuits such as lattice filters, and wavelength division multiplexers (WDM). This increases the demand for model fabrication variation at the design stage itself since the fabless users have no insights into the process specifications. As a result, reliability modelling of photonic circuits has shown significant interest in recent years. This is done by using efficient behavioural models at the circuit level and then applying random variations in the model parameters to assess the impact of these variations. In this chapter, different approaches to modelling fabrication variations in photonic integrated circuits, such as Monte Carlo (MC), Stochastic Collocation (SC), and Polynomial Chaos Expansion (PCE) are reviewed. These methods employ random distribution to the varying parameters with the correlation between different parameter sets fixed. Virtual Wafer-based MC (VW-MC) allows layout-aware variability analysis, where the placement of circuit components on the layout coordinates is exported to the circuit design for dependence analysis. Using these methods, mitigation strategies to counter the manufacturing variations such as thermal compensation, and tapered designs are quantitatively evaluated by appropriate yield analysis and design for manufacturability.&nbsp;<br>

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3