An Expert System to Diagnose Spinal Disorders

Author:

Dashti Seyed M.S.,Dashti Seyedeh F.

Abstract

Objective: Until now, traditional invasive approaches have been the only means being leveraged to diagnose spinal disorders. Traditional manual diagnostics require a high workload, and diagnostic errors are likely to occur due to the prolonged work of physicians. In this research, we develop an expert system based on a hybrid inference algorithm and comprehensive integrated knowledge for assisting the experts in the fast and high-quality diagnosis of spinal disorders. Methods: First, for each spinal anomaly, the accurate and integrated knowledge was acquired from related experts and resources. Second, based on probability distributions and dependencies between symptoms of each anomaly, a unique numerical value known as certainty effect value was assigned to each symptom. Third, a new hybrid inference algorithm was designed to obtain excellent performance, which was an incorporation of the Backward Chaining Inference and Theory of Uncertainty. Results: The proposed expert system was evaluated in two different phases, real-world samples, and medical records evaluation. Evaluations show that in terms of real-world samples analysis, the system achieved excellent accuracy. Application of the system on the sample with anomalies revealed the degree of severity of disorders and the risk of development of abnormalities in unhealthy and healthy patients. In the case of medical records analysis, our expert system proved to have promising performance, which was very close to those of experts. Conclusion: Evaluations suggest that the proposed expert system provides promising performance, helping specialists to validate the accuracy and integrity of their diagnosis. It can also serve as an intelligent educational software for medical students to gain familiarity with spinal disorder diagnosis process, and related symptoms.

Publisher

Bentham Science Publishers Ltd.

Subject

Health Informatics,Biomedical Engineering,Computer Science (miscellaneous)

Reference64 articles.

1. Jibril I, Agajo J. Development of a Medical Expert System for Hypertensive Patients Diagnosis: A Knowledge-Based Rules ; Advances in Electrical and Telecommunication Engineering 2018.

2. Chaudhuri SB, Rahman M. Design of a Medical Expert System (MES) Based on Rough Set Theory for Detection of Cardiovascular Diseases 2018.

3. Ghasemi G; The effect of eight weeks of NASM exercises on Sway back of high school female students 2018.

4. Heidari Moghaddam R. Reviewing the role of major thalassemia major in spinal abnormality development Reviewing the role of major thalassemia major in spinal abnormality development 2013.

5. Tolouei A. Developing an expert system to detect blood cancer. J Health Manag 2010.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3