Localization and Edge-Based Segmentation of Lumbar Spine Vertebrae to Identify the Deformities Using Deep Learning Models

Author:

Mushtaq Malaika,Akram Muhammad Usman,Alghamdi Norah SalehORCID,Fatima Joddat,Masood Rao FarhatORCID

Abstract

The lumbar spine plays a very important role in our load transfer and mobility. Vertebrae localization and segmentation are useful in detecting spinal deformities and fractures. Understanding of automated medical imagery is of main importance to help doctors in handling the time-consuming manual or semi-manual diagnosis. Our paper presents the methods that will help clinicians to grade the severity of the disease with confidence, as the current manual diagnosis by different doctors has dissimilarity and variations in the analysis of diseases. In this paper we discuss the lumbar spine localization and segmentation which help for the analysis of lumbar spine deformities. The lumber spine is localized using YOLOv5 which is the fifth variant of the YOLO family. It is the fastest and the lightest object detector. Mean average precision (mAP) of 0.975 is achieved by YOLOv5. To diagnose the lumbar lordosis, we correlated the angles with region area that is computed from the YOLOv5 centroids and obtained 74.5% accuracy. Cropped images from YOLOv5 bounding boxes are passed through HED U-Net, which is a combination of segmentation and edge detection frameworks, to obtain the segmented vertebrae and its edges. Lumbar lordortic angles (LLAs) and lumbosacral angles (LSAs) are found after detecting the corners of vertebrae using a Harris corner detector with very small mean errors of 0.29° and 0.38°, respectively. This paper compares the different object detectors used to localize the vertebrae, the results of two methods used to diagnose the lumbar deformity, and the results with other researchers.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference66 articles.

1. who.inthttps://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury

2. Prevalence and Causes of Paralysis—United States, 2013

3. webmd.comhttps://www.webmd.com/back-pain/ss/slideshow-low-back-pain-overview

4. kenhub.comhttps://www.kenhub.com/en/library/anatomy/lumbar-vertebrae

5. spine-health.comhttps://www.spine-health.com/conditions/lower-back-pain

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3