Author:
Hanif Sana,Irfan Nadeem,Danish Zeeshan,Hussain Nisaar,Ali Muhammad,Nasir Bushra,Iqbal Javed,Saeed Hamid,Ali Rubina,Saleem Zikria
Abstract
The current study was aimed to formulate a continuous release mucoadhesive buccal tablet containing propranolol HCl. The type and quantities of polymers as well as method of compression were set in a preliminary study (F1-F13). Direct compression method was employed in the main study (F14-F24) using Carbopol® 934P (CP), ethylcellulose (EC), sodium alginate (SA), hydroxypropyl methylcellulose (HPMC k4M) and carboxymethylcellulose (CMC) as mucoadhesive polymers and were tested for physicochemical tests i.e. swellability, surface pH, mucoadhesive time, mucoadhesive strength, in vitro release etc. Results obtained from the study were optimized using NeuralPower® 3.1, an artificial intelligence approach. Against the desirability of physico-chemical parameters, the software optimized the ingredients as HPMC (150mg), CMC (25mg), CP (20mg) and EC (20mg). Outcome revealed that HPMC primarily contributed to the physicochemical properties of mucoadhesive formulation. To compare prediction, optimized ingredients were formulated (F25) and tested. The swellability index of confirmation formulation (F25) was 102% at 6 h. As predicted, similar release pattern was of F25 was obtained as 26% (0.5h), 34% (1h), 40% (2h), 45% (3h), 50% (4h), 62% (5h), 76% (6h), 85% (7h) and 97% (8h) respectively. For release kinetics, DD solver® suggested the release of the drug to be non-Fickian.
Publisher
Bentham Science Publishers Ltd.