Affiliation:
1. Chemistry Department, Faculty of Science, Taif University, Taif, Saudi Arabia
Abstract
Background:
In recent times many new uses have been found for nanomaterials that have
undergone homogenous immobilization within porous supports. For this paper, immobilization of
SNPs on a thiol-functionalized silica monolith using a fast, easy, environmentally friendly and costeffective
process was performed. This was achieved by modifying the surface of a silica-based
monolith using thiol groups, and then we fabricated green SNPs in situ, reducing an inorganic precursor
silver nitrate solution (AgNO3) by employing tangerine peel extract as a reducing reagent,
with Ag-thiol bonds forming along the monument. Doing this allows monoliths to be prepared in
such a way that, as TEM analysis demonstrated, SNPs are evenly distributed along the rod's length.
Once the materials had been fabricated, they were employed as a sorbent by being placed in a centrifuge.
The SNP-thiol functionalized silica monolith was then tested using a standard protein (HSA).
Methods:
The process involves creating monolithic materials by employing a two-part sol-gel technique
before modifying the surface of the silica-based monolith using thiol groups for hosting purposes.
Homogenous surface coverage was achieved through the use of a non-toxic "green" reducing
reagent (tangerine peel extract) to reduce a silver nitrate solution in place to create SNPs joined to the
pore surface of a thiol-functionalized silica monolith, employing bonds of Ag-thiol. Once these materials
were synthesized, they were classified by utilizing a number of methods based on SEM coupled
with EDAX, TEM, AFM and BET analysis. The silica-based monolith, embedded with constructed
SNPs, was employed as a sorbent in the preconcentration of human serum albumin (HSA).
Results:
The performance of the fabricated materials was measured against a silica-based monolith
with no SNPs. Also, a silica monolith with constructed SNPs embedded was employed to capture
HSA within a sample of human urine mixed with a double detergent concentrate (SDS). Such a
monolith containing functionalized SNPs can be a highly effective sorbent for preconcentration of
proteins in complex samples.
Conclusion:
It was shown to have superior performance compared to a bare silica-based monolith.
Additionally, it was shown that a monolithic column modified by SNPs could preconcentrate spiked
HSA in urine samples.
Publisher
Bentham Science Publishers Ltd.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献