Incorporation of silver stearate nanoparticles in methacrylate polymeric monoliths for hemeprotein isolation

Author:

Alzahrani Eman1

Affiliation:

1. Chemistry Department, Faculty of Science, Taif University, Taif, KSA,

Abstract

AbstractA unique method was used to synthesize extremely stable silver stearate nanoparticles (AgStNPs) incorporated in an organic-based monolith. The facile strategy was then used to selectively isolate hemeproteins, myoglobin (Myo) and hemoglobin (Hb). Ethyl alcohol, silver nitrate, and stearic acid were, respectively, utilized as reducing agents, silver precursors, and capping agents. The color changed to cloudy from transparent, indicating that AgStNPs had been formed. AgStNP nanostructures were then distinctly integrated into the natural polymeric scaffold. To characterize the AgStNP–methacrylate polymeric monolith and the silver nanoparticles, energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and Fourier-transform infrared (FT-IR) spectroscopy were used. The results of the SEM analysis indicated that the AgStNP–methacrylate polymeric monolith’s texture was so rough in comparison with that of the methacrylate polymeric monolith, indicating that the extraction process of the monolith materials would be more efficient because of the extended surface area of the absorbent. The comparison between the FT-IR spectra of AgStNPs, the bare organic monolith, and AgStNP–methacrylate polymeric monolith confirms that the AgStNPs were immobilized on the surface of the organic monolith. The EDX profile of the built materials indicated an advanced peak of the Ag sequence which represented an Ag atom of 3.27%. The results therefore established that the AgStNPs had been successfully integrated into the monolithic materials. Extraction efficiencies of 92% and 97% were used to, respectively, recover preconcentrated Myo and Hb. An uncomplicated method is a unique approach of both fabrication and utilization of the nanosorbent to selectively isolate hemeproteins. The process can further be implemented by using other noble metals.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3