Visible Light Driven Degradation of Terephthalic Acid: Optimization of Energy Demand by Light Modulation Techniques

Author:

Sannino Diana1ORCID,Vaiano Vincenzo1ORCID,Sacco Olga2ORCID,Morante Nicola1ORCID,De Guglielmo Luca3ORCID,Di Capua Giulia3ORCID,Femia Nicola3ORCID

Affiliation:

1. Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy

2. Department of Chemistry and Biology “A. Zambelli”, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy

3. Department of Information, and Electrical Engineering and Applied Mathematics, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy

Abstract

Aims: The aim of this work was to investigate the impact of light modulation parameters on the degradation of terephthalic acid, an organic model pollutant, within a heterogeneous photocatalytic system under visible light. For this purpose, a fixed bed photocatalytic reactor, irradiated by white-light LEDs matrix controlled by a system for light dimming, was used. The bed consisted of a nitrogen-doped titania photocatalyst deposited on polystyrene pellets. Background: Wastewater containing TPA can be treated into conventional aerobic biological units. However, the mineralization of TPA is slow and inefficient and its presence negatively influences the biodegradation efficiency because this pollutant inhibits microbial growth. Nowadays, innovative technologies named advanced oxidation processes (AOPs), such as heterogeneous photocatalysis with UV and visible light, ozonation, and Fenton oxidation, have gained popularity for effective organic destruction of TPA from wastewater. The heterogeneous photocatalytic oxidation process of the TPA under visible light is the most advantageous process in terms of both fixed and operating costs. Objective: In this work, the successful application of light modulation techniques for degradation of TPA using a photocatalytic system with supported visible active photocatalysts (N-doped TiO2) immobilized on polystyrene pellets is reported. In particular, sinusoidal lighting has been used analyzing the influence of the period of oscillation and the amplitude of light modulation on the reaction kinetics, in such a way as to minimize the times and energy costs for the process. Methods: To evaluate the influence of light modulation on the efficiency of the TPA removal, a discontinuous system composed of a Recirculating Photocatalytic Fixed Bed Reactor (RPFBR) irradiated by a matrix of white light LEDs was used. The flat geometry of the photoreactor guarantees the efficient excitation of the photocatalyst. An amount of 250 mL of aqueous solution with the initial TPA concentration of 12.5 ppm was applied in the photocatalytic tests lasting 180 min of irradiation fixed or sinusoidal modulated. Results: The results show that the variation of the oscillation period of the sinusoidal modulation has a pertinent influence on the photodegradation of TPA and a maximum value of the apparent kinetic constant, 0.0045 min-1 is found when the period of oscillation is 0.24 s. The sinusoidal modulation with optimal amplitude occurs with current between 50-200 mA, that shows the highest value of the apparent kinetic constant equal to 0.0046 min-1. The optimal sinusoidal modulation, as a consequence is with current between 50-200 mA and period of 0.24 s. From the data collected from the tests, it is possible to evaluate the energy cost necessary to obtain the reduction of 90% of the terephthalic acid in 1 m3 of polluted water for each modulation (E E/O), and compare these values with other tests for TPA degradation reported in the literature. The internal comparison with the three systems of literature shows that the optima sinusoidal modulation of LEDs matrix permits a strong reduction in the electrical energy consumption. Conclusion: Photocatalytic tests have demonstrated the improvement of the process energy efficiency using the light modulation technique. A further confirmation of the advantage of light modulation was obtained by comparing the energy costs required for the abatement of 90% of the terephthalic acid in 1m 3 of the photocatalytic system. Finally, a mathematical model for photocatalytic degradation of terephthalic acid within the recirculating fixed bed photocatalytic reactor, irradiated by white-light LEDs was developed.

Funder

CATALIZZATORI ETEROGENEI INNOVATIVI PER PROCESSI CHIMICI SOSTENIBILI

Publisher

Bentham Science Publishers Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3