Visible light-driven degradation of Acid Orange 7 by light modulation techniques

Author:

Sannino DianaORCID,Morante Nicola,Sacco Olga,Mancuso Antonietta,De Guglielmo Luca,Di Capua Giulia,Femia Nicola,Vaiano Vincenzo

Abstract

Abstract The impact of light modulation on the decolorization of Acid Orange 7 (AO7) in aqueous solution was examined in this paper. A fixed bed batch photocatalytic reactor with a flat plate geometry, irradiated by 240 white-light LEDs, was used. A successful transfer of visible active photocatalyst (N-TiO2) in powder form on a polystyrene (PS) transparent plate was realized. The structured photocatalyst was characterized through SEM–EDX, Raman and UV-DRS analyses, evidencing the formation of a coating of N-TiO2 in the anatase phase, with a band-gap energy of 2.5 eV, and almost uniform distribution on the PS surface. Different LED dimming techniques, with fixed and variable duty-cycle values, were tested, and four types of light modulation were compared: fixed duty cycle (constant irradiation), sinusoidal variable duty cycle (sinusoidal variable irradiation), triangular variable duty cycle (triangular variable irradiation), and square wave variable duty cycle (square wave variable irradiation). The resulting responsiveness/efficiency of the LED versus the current intensity was evaluated, and the stability of the photocatalyst activity and the influence of optimized irradiation waveforms were examined in the decolorization of 400 mL of 10 ppm AO7 solution. The sinusoidal modulation, with current between 50 and 100 mA and 10 s as the period, shows the highest value of the apparent pseudo-first-order kinetic constant, resulting equal to 0.0044 min−1, at parity of total transmitted photons. An energy saving with the application of sinusoidal irradiation is highlighted with respect to the literature. Graphical Abstract

Funder

Università di Salerno

Università degli Studi di Salerno

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3