A Genetic Predictive Model Estimating the Risk of Developing Adolescent Idiopathic Scoliosis

Author:

Xu Leilei1,Wu Zhichong1,Xia Chao1,Tang Nelson1,Cheng Jack C.Y.1,Qiu Yong1,Zhu Zezhang1

Affiliation:

1. Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing, China

Abstract

Background: Previous GWASs have revealed several susceptible variants associated with adolescent idiopathic scoliosis (AIS). Risk prediction based on these variants can potentially improve disease prognosis. We aimed to evaluate the combined effects of genetic factors on the development of AIS and to further develop a genetic predictive model. Methods: A total of 914 AIS patients and 1441 normal controls were included in the discovery stage, which was followed by the replication stage composed of 871 patients and 1239 controls. Genotyping assay was performed to analyze 10 previously reported susceptible variants, including rs678741 of LBX1, rs241215 of AJAP1, rs13398147 of PAX3, rs16934784 of BNC2, rs2050157 of GPR126, rs2180439 of PAX1, rs4940576 of BCL2, rs7593846 of MEIS1, rs7633294 of MAGI1 and rs9810566 of TNIK. Logistic regression analysis was performed to generate a risk predictive model. The predicted risk score was calculated for each participant in the replication stage. Results: The association of the 10 variants with AIS was successfully validated. The established model could explain approximately 7.9% of the overall variance. In the replication stage, patients were found to have a remarkably higher risk score as compared to the controls (44.2 ± 14.4 vs. 33.9 ± 12.5, p <0.001). There was a remarkably higher proportion of the risk score i.e. >40 in the patients than in the controls (59% vs. 28.9%, p <0.001). Conclusion: Risk predictive model based on the previously reported genetic variants has a remarkable discriminative power. More clinical and genetic factors need to be studied, to further improve the probability to predict the onset of AIS.

Funder

Research Grants Council of the Hong Kong

National Natural Science Foundation of China

Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3