Prostate Cancer Gene Regulatory Network Inferred from RNA-Seq Data

Author:

Moore Daniel1,de Matos Simoes Ricardo2,Dehmer Matthias3,Emmert-Streib Frank4

Affiliation:

1. School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom

2. Department of Medical Oncology, Dana- Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02115, United States

3. Department of Mechatronics and Biomedical Computer Science, University for Health Sciences, Medical Informatics and Technology, 6060 Hall in Tirol, Austria

4. Institute of Biosciences and Medical Technology, Tampere, Finland

Abstract

Background: Cancer is a complex disease with a lucid etiology and in understanding the causation, we need to appreciate this complexity. Objective: Here we are aiming to gain insights into the genetic associations of prostate cancer through a network-based systems approach using the BC3Net algorithm. Methods: Specifically, we infer a prostate cancer Gene Regulatory Network (GRN) from a large-scale gene expression data set of 333 patient RNA-seq profiles obtained from The Cancer Genome Atlas (TCGA) database. Results: We analyze the functional components of the inferred network by extracting subnetworks based on biological process information and interpret the role of known cancer genes within each process. Furthermore, we investigate the local landscape of prostate cancer genes and discuss pathological associations that may be relevant in the development of new targeted cancer therapies. Conclusion: Our network-based analysis provides a practical systems biology approach to reveal the collective gene-interactions of prostate cancer. This allows a close interpretation of biological activity in terms of the hallmarks of cancer.

Funder

Austrian Science Funds

Publisher

Bentham Science Publishers Ltd.

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3