Author:
Saint-Antoine Michael,Singh Abhyudai
Abstract
AbstractAlthough the challenge of gene regulatory network inference has been studied for more than a decade, it is still unclear how well network inference methods work when applied to real data. Attempts to benchmark these methods on experimental data have yielded mixed results, in which sometimes even the best methods fail to outperform random guessing, and in other cases they perform reasonably well. So, one of the most valuable contributions one can currently make to the field of network inference is to benchmark methods on experimental data for which the true underlying network is already known, and report the results so that we can get a clearer picture of their efficacy. In this paper, we report results from the first, to our knowledge, benchmarking of network inference methods on single cellE. colitranscriptomic data. We report a moderate level of accuracy for the methods, better than random chance but still far from perfect. We also find that some methods that were quite strong and accurate on microarray and bulk RNA-seq data did not perform as well on the single cell data. Additionally, we benchmark a simple network inference method (Pearson correlation), on data generated through computer simulations in order to draw conclusions about general best practices in network inference studies. We predict that network inference would be more accurate using proteomic data rather than transcriptomic data, which could become relevant if highthroughput proteomic experimental methods are developed in the future. We also show through simulations that using a simplified model of gene expression that skips the mRNA step tends to substantially overestimate the accuracy of network inference methods, and advise against using this model for futurein silicobenchmarking studies.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献