The Measurement and Mathematical Analysis of 5-Fu Release from Magnetic Polymeric Nanocapsules, following the Application of Ultrasound

Author:

Abed Ziaeddin1,Khoei Samideh1,Ghalandari Behafarid2,Beik Jaber1,Shakeri-Zadeh Ali1,Ghaznavi Habib3,Shiran Mohammad-Bagher1

Affiliation:

1. Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran

2. Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran

3. Department of Pharmacology, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran

Abstract

Objective: To study the effects of ultrasound irradiation on the release profile of 5-fluorouracil (5-Fu) loaded magnetic poly lactic co-glycolic acid (PLGA) nanocapsules. Also, the controlled drug-release behaviour of the nanocapsules was mathematically investigated. Methods: The nanocapsules were synthesized, dispersed in phosphate buffered saline (PBS), transferred to a dialysis bag, and finally, irradiated by various ultrasound parameters (1 or 3MHz; 0.3-1W/cm2; 5-10 minutes). The release profile of the irradiated nanocapsules was recorded for 14 days. To find the in vitro drug release mechanism in the absence and presence of various intensities of ultrasound, the obtained data were fitted in various kinetic models for drug release. Results: The results demonstrated that the ultrasound speeded up the rate of drug release from the nanocapsules. The mathematical analysis illustrated that when the ultrasound intensity is increased, the probability of controlled release behaviour of the nanocapsules is raised. We found that drug release from the irradiated nanocapsules follows an erosion-controlled mechanism with the decrease in the velocity of diffusion. Conclusion: In conclusion, to attain a controlled drug-delivery strategy in the area of cancer therapy, the drug release profile of the nano-carriers may be well-controlled by ultrasound.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3