A Review Study of Dendrimer Nanoparticles Influences on Stored Platelet in Order to Treat Patients (2001-2020)

Author:

Mehrizi Tahereh Zadeh1,Ardestani Mehdi Shafiee2,Kafiabad Sedigheh Amini1

Affiliation:

1. Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehra, Iran

2. Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Background: Platelets are sensitive to chilling, therefore, the optimal storage temperature for maintaining normal function and structure in platelets is 22-24 °C up to 3-5 days. Introduction: Platelets are important blood cells involved in immunity, inflammation, and thrombosis. Today, platelet products are widely used to prevent bleeding in patients with thrombocytopenia and coagulopathy disorders. As a result, maintaining the quality of these products is very important. Method: In this review study, the reported influences of various dendrimers on platelets from 2001 to 2020 were investigated. Result: The results showed that positively charged dendrimers could cause platelet aggregation and activation during platelet storage time through their amine residues. In addition to surface charge, high generations, molecular weight and concentration are not recommended in the field of platelet storage and treatment. In contrast, negatively charged dendrimers, usually used at lower generations with proper molecular weight, lower size (less than 100 nm) and their carboxyl residues, cannot induce adverse effects on platelets during storage time. In addition, the results of this study revealed that PEGylation of dendrimers and platelets could improve platelet storage conditions. Conclusion: As anionic dendrimers can improve platelet storage time without inducing significant changes in morphology and function of platelets, they are recommended in the field of platelet storage and treatment.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3