Experimental and Computational Study of Hyaluronidase Interactions with Glycosaminoglycans and their Ligands

Author:

Maksimenko Alexander V.1ORCID,Sakharova Yuliya S.1,Beabealashvilli Robert Sh.1

Affiliation:

1. Institute of Experimental Cardiology, National Medical Research Center for Cardiology, 3rd Cherepkopskaya str. 15A, 121 552, Moscow, Russian Federation

Abstract

: Covalent conjugation of hyaluronidase with copolymeric glycosaminoglycans (GAG, heparin and dermatan sulfate) considerably inactivates the enzyme, while conjugation with polymeric GAG (chondroitin sulfate and hyaluronan) improves its stability. These effects are associated with structural differences of these GAG caused by С-5 epimerization of glucuronic and iduronic acid residues and different effects of (α[1 – 4] and α[1 – 3] relative to β[1 – 4] and β[1 – 3]) glycosidic bonds. Pronounced effects of galactose C-4 epimers (in comparison with glucose) and disaccharide mixture (lactose, cellobiose, maltose) on endoglycosidase activity of hyaluronidase emphasize the importance of its diversified multi-contact microenvironment. For a better understanding of the mechanisms regulating hyaluronidase activity, molecular docking and molecular dynamics were chosen. Stabilization effect of chondroitin ligands on heat inactivation of hyaluronidase was demonstrated. An increase in denaturation temperature by 10-15oC hampers blocking of the active site entrance and prevents the enzyme inactivation. Enzyme-GAG interactions were examined by molecular docking with molecular dynamic elaboration. Gradual chemical modification of hyaluronidase was based on the calculated sequence of preferential binding of GAG. Theoretically, covalent binding of chondroitin sulfate trimers at cs7 or cs7, cs1 and cs5 on the enzyme surface provides complete protection against heparin inhibition. Computational investigation of hyaluronidase microenvironment and interactions which limit the enzyme activity allows identification of the best GAG regulators of hyaluronidase endoglycosidase activity and their experimental verification.

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Molecular Medicine,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3