Synthesis and Evaluation of New Derivatives of Busulfan as an Anti-carcinogenic Drug against k562 Cancer Cells Using the AO / PI Method

Author:

Jabbari HadiORCID,Khosravi SetarehORCID,Azimi Saeid

Abstract

Background: Busulfan is a DNA alkylating drug used to treat chronic myeloid leukemia (CML). This type of leukemia affects bone marrow cells or myocytes, which make up bone marrow tissue having a chronic process. Leukemia is a progressive and malignant disease of the body's hematopoietic organs. The disease is caused by the underdevelopment and proliferation of white blood cells and their precursors in the blood and bone marrow. Objective: The synthesis of Busulfan drug and the conjugation of Busulfan from the anomeric position of acetylated galactose as a new derivative of Busulfan and its anti-cancer effect on K562 cancer cells are among the most important objectives of this study. Methods: In this work, galactose was acetylated with acetic anhydride in the presence of sodium acetate, then the anomeric position of acetylated carbohydrate deacetylated using imidazole to obtain the final product through the reaction of Busulfan. Anti-cancer activity of the product was evaluated against K562 cancer cells. The proliferation and survival of K562 cancer cells and PBMCs (peripheral blood mononuclear cells) using the AO/PI method were studied. Furthermore, 1- (2, 3, 4, 6-tetra-O-acetyl-Iβ-D-galactopyranosyl) -4- (methyl sulfonyl oxy) butane was evaluated against cancer cells as a new derivative. Results: In this study, the Acridine Orange / Propidium Iodide (AO/PI) method was performed using fluorescence microscopy to evaluate the efficacy of a synthesized product. The effective dose of 0.02 mg/L of 1- (2, 3, 4, 6-tetra-O-acetyl-Iβ-D-galactopyranosyl) -4- (methyl sulfonyl oxy) butane was observed to cause 96% of cancer cells necrosis. Conclusion: 1- (2, 3, 4, 6-tetra-O-acetyl-Iβ-D-galactopyranosyl) -4- (methyl sulfonyl oxy) butane as a new derivative of Busulfan acts non-specifically in the cell cycle by inhibiting DNA activity by alkylation and binding to the DNA strand. Alkylating agents usually bind an alkyl group to the number seven nitrogen atom in the guanine nucleotide in a DNA molecule.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine

Reference14 articles.

1. Calvaresi EC, Hergenrother PJ. Glucose conjugation for the specific targeting and treatment of cancer. Chem Sci 2013; 4 (6) : 2319-33.

2. Jabbari H, Gheytaranpoor S. Synthesis of Carbohydrate esters and selective anomeric deacetylation by MgO/MeOH. J Chim Oggi 2019; S4 : 5-7.

3. Johnsson R, Ellervik U. Selective 1-O-deacetylation of carbohydrates using polymer-bound benzylamine. J Synlett 2005; 19 : 2939-40.

4. Kikuzaki H, Miyajima Y, Nakatani N. Phenolic glycosides from berries of Pimenta dioica. J Nat Prod 2008; 71 (5) : 861-5.

5. Liang J, Huang M, Duan W, Yu XQ, Zhou S. Design of new oxazaphosphorine anticancer drugs. Curr Pharm Des 2007; 13 (9) : 963-78.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3