Novel Benzylamine Derivatives: Synthesis, Anti-Mycobacterium Tuberculosis Evaluation and Predicted ADMET Properties

Author:

Sedibana Mmaserole R.,Leboho Tlabo C.

Abstract

Background: Tuberculosis (TB), a disease caused by the bacillus bacteria Mycobacterium tuberculosis is one of the major contributors of ill health in the world. TB is ranked in the top 10 causes of death globally and it is the leading killer associated with a single infectious agent. According to the World Health Organization (WHO), global number of deaths associated with TB have been slowly declining with 1.3 million in reported 2016 and 2017, and 1.2 million reported in 2018 and 2019. Objective: The synthesis, characterisation, biological evaluations, and the prediction of ADMET properties of the novel benzylamine derivatives. Methods: Commercially available reagents and solvents were purchased from Sigma Aldrich and Merck (South Africa). All chemicals were used as received, unless otherwise stated. The synthesised crude compounds were purified by flash silica gel column chromatography (5 – 30% ethyl acetate in hexane). The successful formation and purity of the synthesised compounds was confirmed by NMR, HRMS and melting point. Results: The respective organic compounds were synthesised by treating 3-ethoxysalcyladehyde, 5-bromo-3-ethoxysalcyladehyde, 5-chloro-3-ethoxysalcyladehyde with various aromatic amines and the products were obtained in good to excellent yields. The 1H and 13C NMR spectra of all the products showed the appearance of the methylene signals ranging from 3.88 – 4.68 ppm and 42.25 – 52.57 ppm respectively. Additionally, most compounds showed anti-Mycobacterium tuberculosis activity that ranged between 20 and 28 µM. Conclusion: A total of 36 compounds were synthesised and successfully biologically evaluated against Mycobacterium tuberculosis (Mtb) H37RV strain. All compounds showed activity against Mtb at concentrations of > 20 µM < 28 µM with the exception of compound one that was active against Mtb at higher concentration (MIC90 > 125 µM).

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine

Reference41 articles.

1. Global Tuberculosis Report. World Health Organization 2017.

2. Global Tuberculosis Report. World Health Organization 2018.

3. Global Tuberculosis Report. World Health Organization 2019.

4. Global Tuberculosis Report 2020. World Health Organization 2020.

5. Raphoko LA, Lekgau K, Lebepe CM, Leboho TC, Matsebatlela TM, Nxumalo W. Synthesis of novel quinoxaline-alkynyl derivatives and their anti-Mycobacterium tuberculosis activity. Bioorg Med Chem Lett 2021; 35 127784

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3