Hologram QSAR and Topomer CoMFA Study on Naphthyridone Derivatives as ATAD2 Bromodomain Inhibitors

Author:

Yuan Jintao1,lv Zhenxia1,Ren Jing1,Zhang Shaobo1,Wang Bokai1,Peng Yuxin1,Yao Wu1

Affiliation:

1. College of Public Health, Zhengzhou University, Zhengzhou 450001, P.R. China

Abstract

Background: ATAD2 is closely related to the occurrence and proliferation of many tumors. Thus, exploring ATAD2 inhibitors is greatly significant for the prevention and treatment of tumors. In this study, the quantitative structure–activity relationship (QSAR) analyses of 57 naphthyridone derivatives were conducted using hologram quantitative structure–activity relationship (HQSAR) and topomer comparative molecular field analysis (topomer CoMFA). Method: The 57 naphthyridone derivatives were divided into the training (44 derivatives) and testing (13 derivatives) sets. HQSAR and topomer CoMFA models were obtained by applying the SYBYL-X software and validated using various validation parameters. Contribution maps from the best HQSAR model and the contour maps from the best topomer CoMFA model were analyzed. Results: The most effective HQSAR model exhibited significant cross-validated (q2 = 0.872) and non cross-validated (r2 = 0.972) correlation coefficients, and the most effective topomer CoMFA model had q2 = 0.861 and r2 = 0.962. Several external validation parameters, such as , , , , and , were used to calculate the correlation coefficients of the test set samples and validate both models. The result exhibited a powerful predictive capability. Graphical results from HQSAR and topomer CoMFA were validated by the binding mode in the crystal structure. Conclusion: The models may be beneficial to enhance the understanding of the structure–activity relationships for this class of compounds and also provide useful clues for the design of potential ATAD2 bromodomain inhibitors.

Funder

Key Scientific Research Project of Colleges and Universities in Henan Province

Young Talents Cultivation Program of the School of Medicine, Henan University in 2019

Publisher

Bentham Science Publishers Ltd.

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3