3D Object Recognition System Based On Local Shape Descriptors and Depth Data Analysis

Author:

Chowdhary Chiranji Lal1

Affiliation:

1. Department Computer Applications and Creative Media, School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India

Abstract

Background: A physical object, which is actually in 3D form, is captured by a sensor/ camera (in case of computer vision) and seen by a human eye (in case of a human vision). When someone is observing something, many other things are also involved there which make it more challenging to recognize. After capturing such a thing by a camera or sensor, a digital image is formed which is nothing other than a bunch of pixels. It is becoming important to know that how a computer understands images. Objective: This paper is for highlighting novel techniques on 3D object recognition system with local shape descriptors and depth data analysis. Methods: The proposed work is applied to RGBD and COIL-100 datasets and this is of four-fold as preprocessing, feature generation, dimensionality reduction, and classification. The first stage of preprocessing is smoothing by 2D median filtering on the depth (Z-value) and registration by orientation correction on 3D object data. The next stage is of feature generation and having two phases of shape map generation with shape index map and SIFT/SURF descriptors. The dimensionality reduction is the third stage of this proposed work where linear discriminant analysis and principal component analysis are used. The final stage is fused on classification. Results: Here, calculation of the discriminative subspace for the training set, testing of object data and classification is done by comparing target and query data with different aspects for finding proper matching tasks. Conclusion: This concludes with new proposed approach of 3D Object Recognition. The local shape descriptors are used for 3D object recognition system to implement and test. This system is achieves 89.2% accuracy for Columbia object image library-100 images by using local shape descriptors.

Publisher

Bentham Science Publishers Ltd.

Subject

General Computer Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Abnormal Recognition Technology of 3D Virtual Scene Image Based on Wireless Network Sensor;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

2. Uncertainty Prediction for Monocular 3D Object Detection;Sensors;2023-06-07

3. Multi feature-rich synthetic colour to improve human visual perception of point clouds;ISPRS Journal of Photogrammetry and Remote Sensing;2023-02

4. Study on the Encryption and Decryption Capabilities of Hybrid Techniques for Images;Intelligent Sustainable Systems;2023

5. Information recombination network for contour detection;Multimedia Tools and Applications;2022-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3