Uncertainty Prediction for Monocular 3D Object Detection

Author:

Mun Junghwan1,Choi Hyukdoo1

Affiliation:

1. Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic of Korea

Abstract

For object detection, capturing the scale of uncertainty is as important as accurate localization. Without understanding uncertainties, self-driving vehicles cannot plan a safe path. Many studies have focused on improving object detection, but relatively little attention has been paid to uncertainty estimation. We present an uncertainty model to predict the standard deviation of bounding box parameters for a monocular 3D object detection model. The uncertainty model is a small, multi-layer perceptron (MLP) that is trained to predict uncertainty for each detected object. In addition, we observe that occlusion information helps predict uncertainty accurately. A new monocular detection model is designed to classify occlusion levels as well as to detect objects. An input vector to the uncertainty model contains bounding box parameters, class probabilities, and occlusion probabilities. To validate predicted uncertainties, actual uncertainties are estimated at the specific predicted uncertainties. The accuracy of the predicted values is evaluated using these estimated actual values. We find that the mean uncertainty error is reduced by 7.1% using the occlusion information. The uncertainty model directly estimates total uncertainty at the absolute scale, which is critical to self-driving systems. Our approach is validated through the KITTI object detection benchmark.

Funder

Soonchunhyang University Research Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3