Emodin Alcohols: Design, Synthesis, Biological Evaluation and Multitargeting Studies with DNA, RNA, and HSA

Author:

Zhang Hui-Zhen1,Wang Hai-Guang1

Affiliation:

1. School of Pharmacy, Linyi University, Linyi 276000, China.

Abstract

Objective: A series of novel emodin alcohols were designed and prepared in an effort to overcome the increasing microorganism resistance. Methods: Novel emodin alcohols were prepared from commercial emodin and different nitrogen-containing heterocycles via different synthetic strategies, such as O-alkylation and N-alkylation. The antimicrobial activity of synthesized emodin compounds was evaluated in vitro by a two-fold serial dilution technique. The interaction of emodin compound 3d with biomolecule was researched using UV-vis spectroscopic method and fluorescence spectroscopy. Results: Emodin compound 3d containing 2-methyl-5-nitro imidazole ring showed relatively good antimicrobial activity. Notably, it exhibited equivalent activity against S. aureus in comparison to the reference drug norfloxacin (MIC = 4 g/mL). The combination of strong active compound 3d with reference drugs showed better antimicrobial activity with less dosage and a broader antimicrobial spectrum than their separate use. Further research displayed that emodin compound 3d could intercalate into S. aureus DNA to form the 3d–DNA complex, which might correlate with the inhibitory activity. The hydrogen bonds were found between S. aureus DNA gyrase and strong active compound 3d during the docking research, which were in accordance with the spectral experiment results. The interaction with yeast RNA of compound 3d could also form a complex via hydrogen bonds. The hydrogen bonds were found to play a major role in the transportation of emodin compound 3d by human serum albumin (HSA), as confirmed by molecular simulation. Conclusion: This work provides a promising starting point to optimize the structures of emodin derivatives as potent antimicrobial agents.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3