Synthesis, Antimicrobial Evaluation, and Interaction of Emodin Alkyl Azoles with DNA and HSA

Author:

Zhou Yu-Hang1,Wang Ying1,Zhang Hui-Zhen1ORCID

Affiliation:

1. School of Medicine, Linyi University, Linyi 276000, China

Abstract

Objective: This study aimed to overcome the growing antibiotic resistance. Moreover, the new series of emodin alkyl azoles were synthesized. Method: The novel emodin alkyl azoles were synthesized using commercial emodin and azoles by alkylation. The NMR and HRMS spectra were employed to confirm the structures of novel prepared compounds. The in vitro antibacterial and antifungal activities of the prepared emodin compounds were studied by the 96-well plate method. The binding behavior between emodin 4-nitro imidazole compound 3c and S. aureus DNA was researched using an ultraviolet-visible spectrophotometer. Furthermore, fluorescence spectrometry was used to explore the interaction with human serum albumin (HSA). Results: The in vitro antimicrobial results displayed that compound 3c gave relatively strong activities with MIC values of 4−16 μg/mL. Notably, this compound exhibited 2-fold more potent activity against S. aureus (MIC = 4 μg/mL) and E. coli (MIC = 8 μg/mL) strains than clinical drug Chloromycin (MIC = 8 and 16 μg/mL). The UV-vis absorption spectroscopy showed that 4-nitro imidazole emodin 3c could form the 3c-DNA complex by intercalating into S. aureus DNA, inhibiting antimicrobial activities. The simulation results displayed that the emodin 3c and DNA complex were formed by hydrogen bonds. The spectral experiment demonstrated that compound 3c could be transported by human serum albumin (HSA) via hydrogen bonds. The molecular simulation found that the hydroxyl group and the nitroimidazole ring of the emodin compound showed an important role in transportation behavior. Conclusion: This work may supply useful directions for the exploration of novel antimicrobial agents.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3