Towards Protein Surface Mimetics

Author:

Fairlie David P.1,West Michael L.1,Wong Allan K.1

Affiliation:

1. Centre for Drug Design and Development, University of Queensland, Brisbane, Qld 4072, Australia

Abstract

Proteins are generally poor drug candidates due to bioavailability problems that stem from conformational instability, susceptibility to proteolytic degradation, poor membrane penetration, and unfavourable pharmacokinetics. Since many proteins exert their biological activity through relatively small regions of their folded surfaces, their actions could in principle be reproduced by much smaller 'designer' molecules that retain these localised bioactive surfaces but have potentially improved pharmacokinetic/dynamic properties. Unlike proteins, smaller peptides generally lack well defined three dimensional structure in aqueous solution and tend to be conformationally mobile. Considerable progress has been made in recent years towards the use of molecular constraints to stabilise bioactive conformations. By affixing or incorporating templates that fix secondary and tertiary structures of small peptides, synthetic molecules (protein surface mimetics) can be devised to mimic the localised elements of protein structure that constitute bioactive surfaces. This is a promising growth area of medicinal chemistry that could impact significantly on biology and medicine. In this perspective review we summarise and prescribe methods for mimicking individual elements of secondary structure (helices, turns, strands, sheets) and for assembling their combinations into tertiary structures (helix bundles, multiple loops, helix­ loop-helix motifs). A detailed understanding of the features that stabilise secondary and tertiary structures is the key to developing appropriate templates to support and correctly position residues in smaller folded surfaces. The goal is to direct critical amino acids (or surrogates) into the same conformational space and orientation as in bioactive surfaces of a native protein, yet retain sufficient flexibility to bind cooperatively, and with complementarity, to a given receptor. The requirements of size, shape, and directionality for templates to control peptide assembly and folding are discussed in relation to selected mimetics of secondary and tertiary structures. Particularly striking is the general tendency for protease inhibitors and MHC-binding peptides to adopt strand conformations; agonists and antagonists for G protein-coupled receptors to predominate in turn structures; transcription factors, cytokines and DNA/RNA-binding motifs to be helical; and antigen-recognition segments of antibodies to involve multiple loops.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3