Recent Advances and Challenges of the Drugs Acting on Monoamine Transporters

Author:

Xue Weiwei1,Fu Tingting1,Zheng Guoxun1,Tu Gao1,Zhang Yang1,Yang Fengyuan1,Tao Lin2,Yao Lixia3,Zhu Feng1

Affiliation:

1. Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China

2. Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China

3. Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, United States

Abstract

Background: The human Monoamine Transporters (hMATs), primarily including hSERT, hNET and hDAT, are important targets for the treatment of depression and other behavioral disorders with more than the availability of 30 approved drugs. Objective: This paper is to review the recent progress in the binding mode and inhibitory mechanism of hMATs inhibitors with the central or allosteric binding sites, for the benefit of future hMATs inhibitor design and discovery. The Structure-Activity Relationship (SAR) and the selectivity for hit/lead compounds to hMATs that are evaluated by in vitro and in vivo experiments will be highlighted. Methods: PubMed and Web of Science databases were searched for protein-ligand interaction, novel inhibitors design and synthesis studies related to hMATs. Results: Literature data indicate that since the first crystal structure determinations of the homologous bacterial Leucine Transporter (LeuT) complexed with clomipramine, a sizable database of over 100 experimental structures or computational models has been accumulated that now defines a substantial degree of structural variability hMATs-ligands recognition. In the meanwhile, a number of novel hMATs inhibitors have been discovered by medicinal chemistry with significant help from computational models. Conclusion: The reported new compounds act on hMATs as well as the structures of the transporters complexed with diverse ligands by either experiment or computational modeling have shed light on the poly-pharmacology, multimodal and allosteric regulation of the drugs to transporters. All of the studies will greatly promote the Structure-Based Drug Design (SBDD) of structurally novel scaffolds with high activity and selectivity for hMATs.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3