Protein Subcellular Localization Prediction based on PSI-BLAST Profile and Principal Component Analysis

Author:

Yao Yuhua1,Li Manzhi1,Xu Huimin2,Yan Shoujiang2,He Pingan2,Dai Qi2,Qi Zhaohui3,Liao Bo1

Affiliation:

1. School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China

2. College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China

3. College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

Abstract

Background: Prediction of protein subcellular location is a meaningful task which attracts much attention in recent years. Particularly, the number of new protein sequences yielded by the highthroughput sequencing technology in the post genomic era has increased explosively. Objective: Protein subcellular localization prediction based solely on sequence data remains to be a challenging problem of computational biology. Methods: In this paper, three sets of evolutionary features are derived from the position-specific scoring matrix, which has shown great potential in other bioinformatics problems. A fusion model is built up by the optimal parameters combination. Finally, principal component analysis and support vector machine classifier is applied to predict protein subcellular localization on NNPSL dataset and Cell- PLoc 2.0 dataset. Results: Our experimental results show that the proposed method remarkably improved the prediction accuracy, and the features derived from PSI-BLAST profile only are appropriate for protein subcellular localization prediction.

Funder

Hebei Province Natural Science Fund for Distinguished Young Scientists

Hainan Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3