Use of Chou’s 5-steps rule to predict the subcellular localization of gram-negative and gram-positive bacterial proteins by multi-label learning based on gene ontology annotation and profile alignment

Author:

Bouziane Hafida1,Chouarfia Abdallah1

Affiliation:

1. Département d’Informatique , Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf , USTO-MB BP 1505, El M’Naouer, 31000 , Oran , Algeria

Abstract

Abstract To date, many proteins generated by large-scale genome sequencing projects are still uncharacterized and subject to intensive investigations by both experimental and computational means. Knowledge of protein subcellular localization (SCL) is of key importance for protein function elucidation. However, it remains a challenging task, especially for multiple sites proteins known to shuttle between cell compartments to perform their proper biological functions and proteins which do not have significant homology to proteins of known subcellular locations. Due to their low-cost and reasonable accuracy, machine learning-based methods have gained much attention in this context with the availability of a plethora of biological databases and annotated proteins for analysis and benchmarking. Various predictive models have been proposed to tackle the SCL problem, using different protein sequence features pertaining to the subcellular localization, however, the overwhelming majority of them focuses on single localization and cover very limited cellular locations. The prediction was basically established on sorting signals, amino acids compositions, and homology. To improve the prediction quality, focus is actually on knowledge information extracted from annotation databases, such as protein–protein interactions and Gene Ontology (GO) functional domains annotation which has been recently a widely adopted and essential information for learning systems. To deal with such problem, in the present study, we considered SCL prediction task as a multi-label learning problem and tried to label both single site and multiple sites unannotated bacterial protein sequences by mining proteins homology relationships using both GO terms of protein homologs and PSI-BLAST profiles. The experiments using 5-fold cross-validation tests on the benchmark datasets showed a significant improvement on the results obtained by the proposed consensus multi-label prediction model which discriminates six compartments for Gram-negative and five compartments for Gram-positive bacterial proteins.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3