Encapsulation of Purified Pediocin of Pediococcus pentosaceus into Liposome Based Nanovesicles and its Antilisterial Effect

Author:

Suganthi Vaithiyanathan1ORCID,Ethiraj Selvarajan1ORCID,Anbalagan Nivetha1ORCID,Siddique Jannatul Firdous1ORCID,Vaithilingam Mohanasrinivasan1ORCID

Affiliation:

1. Department of Bio-Medical Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India

Abstract

Aims: To encapsulate a purified bacteriocin into a nanovesicles and check its antibacterial effect. Background: Although the use of nano-encapsulated bacteriocins in food matrices is poorly reported, encapsulated nisin can reduce L. monocytogenes counts in whole and skimmed milk and in soft cheese. Objective: The present study deals with the extraction and purification of a bacteriocin from an isolated strain Pediococcus pentosaceus KC692718. A comparative study of the effect of free pediocin and liposome encapsulated pediocin against Listeria sp. was performed. Methods: The purification of the extracted cell free supernatant was subjected to ammonium sulphate precipitation, cation exchange chromatography followed by gel permeation chromatography. The bacteriocin activity and protein concentration were determined using Lowry’s method. The characterization of the pure pediocin was done. Liposome like nanovesicle was constructed and the stability of the liposome encapsulated pediocin was checked. Finally, the antibacterial effect was comparatively studied of the free pediocin, liposome, and liposome encapsulated pediocin simultaneously. Results: The pediocin of 3.6kDa was purified with a specific activity of 898.8. AU/mg. It remained stable from pH 2.0-8.0 was found to be moderately stable above 80°C and remain stable for one month when stored at -20°C. The encapsulated pediocin showed stability since it retained 50% of its initial activity. The encapsulated pediocin showed 89% of encapsulation efficiency. Conclusion: The encapsulated pediocin not only improved pediocin stability but also enhanced the controlled release of the antimicrobial substances, enough for inhibiting the foodborne pathogen L. monocytogenes.

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3