Task Scheduling in Cloud Using ACO

Author:

Natarajan Yuvaraj1ORCID,Kannan Srihari2ORCID,Dhiman Gaurav3ORCID

Affiliation:

1. Department of Research and Development, ICT Academy, Coimbatore, India

2. Department of Computer Science and Engineering, SNS College of Engineering, Coimbatore, India

3. Department of Computer Science, Government Bikram College of Commerce, Patiala, India

Abstract

Background: Cloud computing is a multi-tenant model for computation that offers various features for computing and storage based on user demand. With increasing cloud users, the usage increases that highlights the problem of load balancing with limited resource availability based on dynamic cloud environment. In such cases, task scheduling creates fundamental issue in cloud environment. Introduction: Certain problems such as, inefficiencies in load balancing latency, throughput ratio, proper utilization of the cloud resources, better energy consumption and response time have been observed. These drawbacks can be efficiently resolved through the incorporation of efficient load balancing and task scheduling strategies. Method: In this paper, we develop an efficient co-operative method to solve the most recent approaches against load balancing and task scheduling have been proposed using Ant Colony Optimization (ACO). These approaches enables in the clear cut identification of the problems associated with the load balancing and task scheduling strategies in the cloud environment. Results: The simulation is conducted to find the efficacy of the improved ACO system for load balancing in cloud than the other methods. The result shows that the proposed method obtains reduced execution time, reduced cost and delay. Conclusion: A unique strategic approach is developed in this paper, Load Balancing, which works with the ACO in relation to the cloud workload balancing task through the incorporation of the ACO technique. The strategy for determining the applicant nodes is based on which the load balancing approach would essentially depend. By incorporating two different approaches: the maximum minute rules and the forward-backward ant, this reliability task can be established. This method is intended to articulate the initialization of the pheromone and thus upgrade the relevant cloud-based physical properties.

Publisher

Bentham Science Publishers Ltd.

Subject

General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3