Aminoalkylated Phenolic Chalcones: Investigation of Biological Effects on Acetylcholinesterase and Carbonic Anhydrase I and II as Potential Lead Enzyme Inhibitors

Author:

Yamali Cem1ORCID,Gul Halise Inci1,Cakir Tahir2,Demir Yeliz3,Gulcin Ilhami4

Affiliation:

1. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum 25240, Turkey

2. Department of Biophysics, Faculty of Medicine, Yuzuncu Yıl University, Van 65200, Turkey

3. Department of Pharmacy Services, Nihat Delibalta Gole Vocational High School, Ardahan University, 75700, Ardahan, Turkey

4. Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey

Abstract

Background: Phenolic Mannich bases have been reported as acetylcholinesterase (AChE) inhibitors for the medication of Alzheimer's disease. Carbonic Anhydrases (CAs) are molecular targets for anticonvulsant, diuretic and antiglaucoma drugs in the clinic. Phenolic compounds have also been mentioned as CA inhibitors. The importance of Mannich bases in drug design inspired our research group to design novel phenolic Mannic bases as potent enzyme inhibitors. Objective: In this study, novel Mannich bases, 1-(3,5-bis-aminomethyl-4-hydroxyphenyl)-3-(4- substitutedphenyl)-2-propen-1-ones (1-9), were designed to discover new and potent AChE inhibitors for the treatment of Alzheimer's disease and also to report their carbonic anhydrase inhibitory potency against the most studied hCA I and hCA II isoenzymes with the hope to find out promising enzyme inhibitors. Methods: Mannich bases were synthesized by the Mannich reaction. The structures of the compounds were elucidated by 1H NMR, 13C NMR, and HRMS. Enzyme inhibitory potency of the compounds was evaluated spectrophotometrically towards AChE, hCA I and hCA II enzymes. Results and Discussion: The compounds showed inhibition potency in nanomolar concentrations against AChE with Ki values ranging from 20.44±3.17 nM to 43.25±6.28 nM. They also showed CAs inhibition potency with Ki values in the range of 11.76±1.29-31.09±2.7 nM (hCA I) and 6.08 ± 1.18-23.12±4.26 nM (hCA II). Compounds 1 (hCA I), 5 (hCA II), and 4 (AChE) showed significant inhibitory potency against the enzymes targeted. Conclusion: Enzyme assays showed that Mannich derivatives might be considered as lead enzyme inhibitors to design more selective and potent compounds targeting enzyme-based diseases.

Funder

Research Foundation of Ataturk University

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3