Docking and 3D-QSAR Studies of Hydrazone and Triazole Derivatives for Selective Inhibition of GRK2 over ROCK2

Author:

Keretsu Seketoulie1,Bhujbal Swapnil Pandurang1,Cho Seung Joo1

Affiliation:

1. Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Korea

Abstract

Introduction: G protein-coupled receptor kinase 2 (GRK2) is known to be implicated in heart failure, and therefore serves as an important drug target. GRK2 belongs to the protein kinase A, G, and C family and shares high sequence similarity with its closely related protein, the Rhoassociated coiled-coil protein kinase 2 (ROCK2). Therefore, selective inhibition of GRK2 over ROCK2 is considered crucial for heart failure therapy. Objective: To understand the structural factors for enhancing the inhibitory activity for GRK2 and selectivity over ROCK2, we analyzed and compared molecular interactions using the same set of ligands against both receptors. Methods: We have performed molecular docking and three-dimensional quantitative structure activity relationship (3D-QSAR) studies on a series of hydrazone and triazole derivatives. Results: The presence of hydrophobic substituents at the triazole ring, electronegative substituents between the pyridine and triazole ring and hydrophobic substituents near the benzene ring increases the activity of both kinases. Whereas, having non-bulky substituents near the triazole ring, bulky and hydrophobic substations at the benzene ring and electronegative and H-bond acceptor substituents at the triazole ring showed a higher inhibitory preference for GRK2 over ROCK2. Conclusion: The outcome of this study may be used in the future development of potent GRK2 inhibitors having ROCK2 selectivity.

Funder

National Research Foundation of Korea

National Research Foundation of the Republic of Korea

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3