Neural Network-based Optimization of Silybum Marianum Extract-loaded Chitosan Particles: Modeling, Preparation and Antioxidant Evaluation

Author:

Safa Kazem D.1,Rezazadeh Shamsali2,Hanafi Ali1

Affiliation:

1. Organosilicon Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz 51666-14766, Iran

2. Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran

Abstract

Background: Silymarin is a flavonolignan extracted from Silybum marianum with various therapeutic applications. Many studies have focused on improving the bioavailability of silymarin due to its wide range of efficacy and low bioavailability. Chitosan, a naturally occurring polymeric substance, has a strong reputation for increasing the solubility of poorly soluble compounds. Objective: This study used artificial neural networks (ANNs) to measure the effects of pH, chitosan to silymarin ratio, chitosan to tripolyphosphate ratio, and stirring time on the loading efficiency of silymarin into chitosan particles. Methods: A model was developed to investigate the interactions between input factors and silymarin loading efficiency. The DPPH method was utilized to determine the antioxidant activity of an optimized formula and pure raw materials. Results: According to the outcome of the ANN model, pH and the chitosan to silymarin ratio demonstrated significant effects on loading efficiency. In addition, increased stirring time decreased silymarin loading, whereas the chitosan-to-tripolyphosphate ratio showed a negligible effect on loading efficiency. Conclusion: Maximum loading efficiency occurred at a pH of approximately~5. Moreover, silymarin- loaded chitosan particles with a lower IC50 value (36.17 ± 0.02 ppm) than pure silymarin (165.04 ± 0.07 ppm) demonstrated greater antioxidant activity.

Funder

Office of Postgraduate Studies of the University of Tabriz

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3