Experimental and Theoretical Study of Biosurfactants Functionalized Gold Nanoparticles for Mixture Detection and Chiral Recognition of Tryptophan by UV-VIS Spectroscopy

Author:

Wu Xiangzong1,Li Yanxia1,Chen Yiting1,Qiu Zhenli1,Huang Lu12

Affiliation:

1. College of Materials and Chemical Engineering, Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Fujian Engineering and Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou, Fujian, China

2. Department of Math and Science Singapore University of Technology and Design, 8 Somapah Road, Singapore

Abstract

Background: Tryptophan (Trp) is an essential amino acid and plays important roles in biological processes. The detection of Trp is very important for its biological and chemical study. Moreover, Trp is a chiral compound; due to its importance in biological processes, researchers have been long committed to the chiral recognition and sensing of Trp enantiomers. Methods: Two biosurfactants, sodium cholate and sodium deoxycholate, were used for the preparation of functionalized gold nanoparticles (AuNPs) which were characterized by transmission electron microscope and potentiometer. UV-Vis spectra of functionalized gold nanoparticle solutions with different concentrations of Trp, tyrosine, phenylalanine, D-Trp, and L-Trp were analyzed. Then, the discrimination mechanism was further investigated, and the promotion mechanism of biosurfactants was studied by density functional theory (DFT). Results: Trp could induce the aggregation of unmodified AuNPs in 2 h, while phenylalanine and tyrosine could not. Adding biosurfactants promoted the aggregation process, and D- Trp rather than LTrp was found to be responsible for the aggregation. Therefore, there were interaction differences not only between Trp, phenylalanine, and tyrosine but also between Trp enantiomers. Conclusions: UV-vis spectroscopy could be applied for the direct detection of Trp in mixtures as well as the chiral recognition of Trp enantiomers. DFT calculations proved that the interactions of D-Trp with biosurfactants were the strongest, which contributes to the promotion of aggregation.

Funder

National Natural Science Foundation of China

National Science Foundation of Fujian Province

Fuzhou Science and Technology Project

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Molecular Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3