Microchip Electrophoresis and Bioanalytical Applications

Author:

Buyuktuncel Ebru1

Affiliation:

1. Faculty of Pharmacy, Department of Analytical Chemistry, Inonu University, 44280, Malatya, Turkey

Abstract

Microanalytical systems have aroused great interest because they can analyze extremely small sample volumes, improve the rate and throughput of chemical and biochemical analysis in a way that reduces costs. Microchip Electrophoresis (ME) represents an effective separation technique to perform quick analytical separations of complex samples. It offers high resolution and significant peak capacity. ME is used in many areas, including biology, chemistry, engineering, and medicine. It is established the same working principles as Capillary Electrophoresis (CE). It is possible to perform electrophoresis in a more direct and convenient way in a microchip. Since the electric field is the driving force of the electrodes, there is no need for high pressure as in chromatography. The amount of the voltage that is applied in some electrophoresis modes, e.g. Micelle Electrokinetic Chromatography (MEKC) and Capillary Zone Electrophoresis (CZE), mainly determines separation efficiency. Therefore, it is possible to apply a higher electric field along a considerably shorter separation channel, hence it is possible to carry out ME much quicker.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Molecular Medicine,Biochemistry,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3