Artificial Intelligence Approaches in Healthcare Informatics Toward Advanced Computation and Analysis

Author:

Priyanka E.B.,Thangavel S.,Mohanasundaram R,Subramaniam Shamala

Abstract

Introduction Automated Machine Learning or AutoML is a set of approaches and processes to make machine learning accessible for non-experts. AutoML can exhibit optimized enhancement of an existing model or suggest the best models for precise datasets. In the field of computerized Artificial Intelligence (AI), medical experts better utilize AI models with available encrypted information science ability. Methods This paper aims to characterize and summarize the stage-wise design of Automated Machine Learning (AutoML) analysis e-healthcare platform starting from the sensing layer and transmission to the cloud using IoT (Internet of Things). To support the AutoML concept, the Auto Weka2.0 package, which serves as the open-source software platform, holds the predominant priority for experimental analysis to generate statistical reports. Results To validate the entire framework, a case study on Glaucoma diagnosis using the AutoML concept is carried out, and its identification of best-fit model configuration rates is also presented. The Auto-ML built-in model possesses a higher influence factor to generate population-level statistics from the available individual patient histories. Conclusion Further, AutoML is integrated with the Closed-loop Healthcare Feature Store (CHFS) to support data analysts with an automated end-to-end ML pipeline to help clinical experts provide better medical examination through automated mode.

Publisher

Bentham Science Publishers Ltd.

Reference50 articles.

1. Tarmizi NDA, Jamaluddin F, Abu Bakar A, Othman ZA, Zainudin S, Hamdan AR. Malaysia dengue outbreak detection using data mining models. J Next Gener Inf Technol 2013; 4 : 96-107.

2. Chen Y, Chang JH, Greenlee AS, Cheung KC, Slocum AH, Gupta R. Multi-turn, tension-stiffening catheter navigation system. 2010 IEEE International Conference on Robotics and Automation 2010; 5570-5.

3. Archana S, Elangovan DR. Survey of classification techniques in data mining. Int J Comput Sci Mob Appl 2014; 2 : 65-71.

4. Vijayarani S, Dhayanand S. Liver disease prediction using SVM and naïve bayes algorithms. IJSETR 2015; 4 : 816-20.

5. Gulia A, Vohra R, Rani P. Liver patient classification using intelligent techniques. Int J Comput Sci Inf Technol 2014; 5 : 5110-5.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3