Vitality Analysis Algorithm in the Study of Plant Individuals and Populations

Author:

Zlobin Yulian,Kovalenko Ihor,Klymenko Hanna,Kyrylchuk Kateryna,Bondarieva Liudmyla,Tykhonova Olena,Zubtsova Inna

Abstract

Background: The article presents an algorithm of the vitality analysis of plant individuals in the populations that enables the assessment of the prospects for the existence of species within certain phytocenoses and provides important information on the conditions of their growth. There are three basic stages of the algorithm: the first stage is the selection of qualitative characters, which characterize the viability of individuals; the second stage is the assessment of the vitality of specific plant individuals included in the sampling; the third stage is an integral assessment of the population vitality structure. Objective: The goal of the study is to develop the basic algorithm for vitality analysis of populations based on the assessment of the vitality of plant individuals, as well as the authors’ algorithms for vitality analysis, considering the characteristic features of species, in particular, their different life strategies (C-type and R-type). The algorithm of the vitality analysis is demonstrated on the example of populations of the annual weed Persicaria scabra Moench (Polygonaceae), which grows in the pea crop planting (Sumy Region, Ukraine). Methods: The algorithm of vitality analysis is based on the method of Yu. A. Zlobin, which includes 3 main stages. The vitality analysis of populations is carried out on the basis of the assessment of the vitality of certain individuals. The assessment of the vitality structure of populations is the third stage of vitality analysis, where the population belonging to the prosperous, equilibrium, or depressive types is determined depending on the ratio of individuals of different vitality classes (a, b, c). The calculation of the vitality analysis provides for the transformation of absolute values into unit fractions. It ensures the equivalence of the contribution of each of the features used in the assessment of the vitality of individuals and populations as a whole. Results: The article presents a basic algorithm for vitality analysis of plant populations. It also shows the algorithm for vitality analysis considering some biological and ecological characters of the studied species, which may be used in special and relatively rare cases. Some examples of analyses with a well-defined primary strategy ‒ competitors (C-type) or explerents (R-type) have been presented in the article. To calculate the morphoparameters of plant individuals and populations, the most convenient is the statistical package “Statistics”, which provides for the possibility of calculation automation via the command line. The division of populations into three types according to vitality is of general nature. The method of assessing the population vitality is inherently comparative, and this feature is considered to be its advantage. Conclusion: Vitality analysis is useful in assessing the populations of rare plant species, meadow grasses, chemical contamination on the population of plants, identifying any changes in the status populations of forest herbs in the change of forest growth conditions, as well as a number of species of forest-forming tree species. The proposed variants of the algorithm to calculate the vitality of plant species and local populations are characterized by the high biological informative value and flexibility. The incorporated information on the vitality structure of populations in quantitative PVA models to predict their dynamics will significantly increase the reliability of forecasts regarding the prospects for the existence of phytopopulations of species in various plant communities.

Publisher

Bentham Science Publishers Ltd.

Subject

Soil Science,Agronomy and Crop Science,Animal Science and Zoology

Reference63 articles.

1. Grubb PJ. Plant populations and vegetation in relation to habitat, disturbance and competition: problems of generalization. The population structure of vegetation 1985; 595-621.

2. Mooney H, Lavigauderie A, Cesario M, et al. Biodiversity, climate change and ecosystem services. Curr Opin Environ Sustain 2009; 1 (1) : 46-54.

3. Perzanowska J (red). Monitoring gatunkówroślin. Monitoring of plant species. Przewodnik metodyczny. Część 1. GIOŚ: Warszawa. 2010; 256.

4. Picó FX, Rodrigo A, Retana J. Plant Demography Encyclopedia of Ecology 2008; 2811-7.

5. Beissinger SR, McCullough DR. Population viability analysis 2002; 593. [https://press.uchicago.edu/ucp/books/book/chicago/P/bo3637258.html]

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3