Abstract
Diospyros lotus is the one of the most frost-tolerant species in the Diospyros genera, used as a rootstock for colder regions. Natural populations of D. lotus have a fragmented character of distribution in the Northwestern Caucasus, one of the coldest regions of Diospyros cultivation. To predict the behavior of D. lotus populations in an extreme environment, it is necessary to investigate the intraspecific genetic diversity and phenotypic variability of populations in the colder regions. In this study, we analyzed five geographically distant populations of D. lotus according to 33 morphological leaf traits, and the most informative traits were established, namely, leaf length, leaf width, leaf index (leaf to length ratio) and the length of the fourth veins. Additionally, we evaluated the intraspecific genetic diversity of D. lotus using ISSR and SCoT markers and proposed a new parameter for the evaluation of genetic polymorphism among populations, in order to eliminate the effect of sample number. This new parameter is the relative genetic polymorphism, which is the ratio of polymorphism to the number of samples. Based on morphological and genetic data, the northernmost population from Shkhafit was phenotypically and genetically distant from the other populations. The correspondence between several morphological traits (leaf width, leaf length and first to fifth right vein angles) and several marker bands (SCoT5, SCoT7, SCoT30: 800–1500 bp; ISSR13, ISSR14, ISSR880: 500–1000 bp) were observed for the Shkhafit population. Unique SCoT and ISSR fragments can be used as markers for breeding purposes. The results provide a better understanding of adaptive mechanisms in D. lotus in extreme environments and will be important for the further expansion of the cultivation area for persimmon in colder regions.
Funder
Kuban Science Foundation
Ministry of Science and Higher Education of the Russian Federation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献