Formulation and evaluation of hydroxypropylmethylcellulose-dicyclomine microsponges for colon targeted drug delivery: In vitro and in vivo evaluation

Author:

Sher Muhammad1,Sarfaraz Rai Muhammad2,Iqbal Sadia1,Hussain Muhammad Ajaz1,Naeem-ul-Hassan Muhammad1,Hassan Faiza1,Bukhari Syed Nasir Abbas3ORCID

Affiliation:

1. Department of Chemistry, University of Sargodha, Sargodha 40100

2. College of Pharmacy, University of Sargodha, Sargodha 4100

3. Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, 2014, Sakaka, Aliouf, Saudi Arabia

Abstract

Objective: The objective of present study was to design novel colon targeted delivery of dicyclomine Hydrochloride (DCH) microsponges. Methods: Microsponges (MS1-MS4) based on different ratios of hydroxypropylmethylcellulose (HPMC) and DCH was prepared by quasi-emulsion solvent diffusion method. Micro-sponges were analyzed by determining percent yield, encapsulation efficiency, drug content, drug-polymer compatibility and thermal stability. Kinetic analysis of thermal stability data was done by Chang method, Friedman method and Broido method. In vitro dissolution study was carried out at pH 1.2, pH 6.8 and pH 7.4 at different time intervals. Results: Results showed that there was no chemical interaction between DCH and HPMC in all microsponge formulations. Production yield, drug content and encapsulation efficiency were enhanced on increasing the drug-polymer ratio. Thermal stability of all the micro-sponges was greater than that of pure drug. In vitro drug release was decreased on increasing the polymer concentration at different pH levels. The newly prepared micro-sponges based on HPMC were confirmed as a promising means of colon targeted delivery of DCH. An HPLC method was developed and validated for the bioequivalence study of newly designed microsponges. Pharmacokinetics parameters were calculated using linear trapezoidal method after single oral administration of microsponges in white albino rabbits. Pharmacokinetics results indicate an enhancement in the value of t1/2, tmax, Cmax and AUC0-t of DCH in the microsponges as compared to standard DCH showing enhanced bioavailability of drug after microsponges formation. Conclusion: The current study shows a new approach for colon specific delivery of DCH based on microsponges.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3