A Series of New Hydrazone Derivatives: Synthesis, Molecular Docking and Anticholinesterase Activity Studies

Author:

Bozbey İrem1ORCID,Özdemir Zeynep2ORCID,Uslu Harun3ORCID,Özçelik Azime Berna4ORCID,Şenol Fatma Sezer5ORCID,Orhan İlkay Erdoğan5ORCID,Uysal Mehtap1ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan 24100, Turkey

2. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, Malatya 44280, Turkey

3. Department of Medical Services and Techniques, Vocational School of Health Services, Firat University, Elazıg 23040, Turkey

4. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara 06100, Turkey

5. Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06100, Turkey

Abstract

Background: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are known to be serine hydrolase enzymes responsible for the hydrolysis of acetylcholine (ACh), which is a significant neurotransmitter for regulation of cognition in animals. Inhibition of cholinesterases is an effective method to curb Alzheimer’s disease, a progressive and fatal neurological disorder. Objective: In this study, 30 new hydrazone derivatives were synthesized. Then we evaluated their anticholinesterase activity of compounds. We also tried to get insights into binding interactions of the synthesized compounds in the active site of both enzymes by using molecular docking approach. Methods: The compounds were synthesized by the reaction of various substituted/nonsubstituted benzaldehydes with 6-(substitute/nonsubstituephenyl)-3(2H)-pyridazinone-2-yl propiyohydrazide. Anticholinesterase activity of the compounds was determined using Ellman’s method. Molecular docking studies were done by using the ADT package version 1.5.6rc3 and showed by Maestro. RMSD values were obtained using Lamarckian Genetic Algorithm and scoring function of AutoDock 4.2 release 4.2.5.1 software. Results: The activities of the compounds were compared with galantamine as cholinesterase enzyme inhibitor, where some of the compounds showed higher BChE inhibitory activity than galantamine. Compound F111 was shown to be the best BChE inhibitor effective in 50 μM dose, providing 89.43% inhibition of BChE (IC50=4.27±0.36 μM). Conclusion: This study supports that novel hydrazone derivates may be used for the development of new BChE inhibitory agents.

Funder

Gazi University Scientific Researches Unit

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3