Abstract
Background:Ozone exposure rapidly leads to bacterial death, making ozone an effective disinfectant in food industry and health care arena. However, microbial defenses may moderate this effect and play a role in the effective use of oxidizing agents for disinfection.Serratia marcescensis an opportunistic pathogen, expressing genes differentially during infection of a human host. A better understanding of regulatory systems that control expression ofSerratia’s virulence genes and defenses is therefore valuable.Objective:Here, we investigated the role of pigmentation and catalase inSerratia marcescenson survival to ozone exposure.Method:Pigmented and non-pigmented strains ofSerratia marcescenswere cultured to exponential or stationary phase and exposed to 5 ppm of gaseous ozone for 2.5 – 10 minutes. Survival was calculated via plate counts. Catalase activity was measured photometrically and tolerance to hydrogen peroxide was assayed by disk-diffusion.Results:Exposure ofS. marcescensto 5 ppm gaseous ozone kills > 90% of cells within 10 minutes in a time and concentration-dependent manner. Although pigmentedSerratia(grown at 28°C) survived ozonation better than unpigmentedSerratia(grown at 35°C), non-pigmented mutant strains ofSerratiahad similar ozone survival rates, catalase activity and H2O2tolerance as wild type strains. Rather, ozone survival and catalase activity were elevated in 6 hour cultures compared to 48 hour cultures.Conclusion:Our studies did not bear out a role for prodigiosin in ozone survival. Rather, induction of oxidative stress responses during exponential growth increased both catalase activity and ozone survival in both pigmented and unpigmentedS. marcescens.
Publisher
Bentham Science Publishers Ltd.
Subject
General Immunology and Microbiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献